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I. Phys. A Math. Gen. 28 (1995) 559-3579. Printed in ae UK 

Galilei-invariant nonlinear systems of evolution equations 

Wilhelm I Fushchych and Roman M Chernihat 
Institute of Mathematics, National Ukrainian Academy qf Sciences, 3 Tereshchenkivs'ka Street, 
Kyiv 4, Ukraine 

Received 20 April 1995 

Abstract All systems of (n + 1)dimensional quasilinear second-order evolution equations 
invariant under chain of algebras AG(1.n) c AGl(l.n) c AGz(1.n) are described. The resulLs 
obtained are illustrated by the examples of the nonlinear SciuLidinger equations, Hamilton- 
Jacobi-type systems and reaction-diffusion equations. 

1. Introduction 

The (n + 1)-dimensional diffusion (heat) system of equations 

AiU, = A U  
AzV, = A V  

where U = U ( t , x ) ,  V = V(t,x) are unknown differentiable real functions, U, = 
aU/a t ,  V, = aV/a t ,x  = (XI,. . .,xA A I ,  AZ E R, is known to be invariant under the 
generalized Galilei algebra AGz(1.n) [1,2] 

P, = a, P, = a, (24 
(2b) 

(2c) 

(24 
In relations (2) and elsewhere hereinafter Zu = cilUa0 + LuzVav, a,, = , a / a U ,  a, 
a/av, a, = a/at, a, = a/ax,, ax E R, k = I, 2 and a summation is assumed fiom I to 
n over repeated indices. 

and its extension by using the operator (2) will be refereed to as AGl(1.n) [1,2]. 

determinant 

x.3 
2 

QA = AlUau 12Vav GO = tPu - Jab = XuPb - XbPc 

D = ZtP, +nap, -b Z, 
1 2  il = t2Pr +i'x,Pu - ;ilxI Q h  + t Z , ,  C U ~  = -'n 2 '  

The algebra produced by the operators (2a), (2b) is called the GaMei algebra AG(l.n), 

Clearly, the unit operators Z, and QA are linearly dependent only in the case when the 

As a result we obtain two essentially different representations of algebras AGl(1.n) and 
AGz(1.n) for 6 = 0 and 8 # 0, in contrast to the case of a single diffusion equation (the 

t E-mail address: chem@apmat.freenet.kev.ua 
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nonlinear diffusion equation invariant with respect of a set of AGz(1.n) subalgebras was 
studied in [2, 31). 

Notc that in the case when the system (1) is a pair of complcx conjugate Schrodinger 
equations, i.e. U = $, hl = ,i1 = i, the operators Zu and Ql are linearly independent. This 
results in the fact that nonlinear generalizations of Schrodinger equations, preserving their 
symmetry [I], differ essentially from nonlinear generalizations of  the^ diffusion system ( 1 )  
for 6 = 0. 

Now consider a system of quasilinear generalizations of diffusion equations (1) of the 
form 

W I Fushchych and R &I Cherniha 

(3) 

where A,b, c a b ,  Dub. Eab, B1, BZ are arbitrary real or complex differentiable functions of 
2n + 2 variables U ,  V ,  Ut, . . . , U,, VI, . . . , V , .  The indices a = 1, . . . , n and b = 1, . . . , n 
of functions U and V denote differentiating with respect to x, and xb. 

The system (3) generalizes practically all the known nonlinear systems of first- and 
second-order evolution equations, describing various processes in physics, chemistiy and 
biology (heat-and-mass transfer, filtration of a two-phase liquid, diffusion in chemical 
reaction etc) [4-71. 

= Xz = i the 
system (3) is transformed into a pair of complex conjugate equations. We treat them as a 
class of nonlinear generalizations of Schrodinger equations, namely 

iu, Aabuub + A o b d o b  + B ( 4 4  

kiut = AnbUab f Cnbvab BI 
k 1 ~ = D u b U o b f E n b V o b f B z  

~n the case of complex U = G, A,b = hab. Cab = &b. B I  = = B ,  

(4b) 

For A,b = Dab = 0,. = 0, a # b, A ,  = -h equation (4a) is obviously transformed 

I *  

-iUt = Aobdab + DabUob f 

(hereinafter the complex conjugate equations (4b) are omitted). 

into a Schrodinger equation with nonlinear potential B: 

iU, f h A U  = B .  (4') 
I) 

By choice of the corresponding potential B = B(U, U ,  U1 . . . U,, U,, . . . , d.) a great 
variety of Schrodinger equation generalizations, known from the literature (see, e.g., 
[ 1,2,8,9, IO]), can be obtained. 

iU, + hAU = 0 

In the case of zero potential B a classical Schrodinger equation is obtained 

(5)  

invariant under AGz(1.n) algebra with the basic operators (2) [ll],  where 

(6) 

Note that the algebra AGz(1.n) in the case of the Schrodinger equations is called the 
Schrodinger algebra [ll].  

In the present paper all the systems of evolution equations of the form (3), invariant 
under the chain of algebras AG(1.n) c AGl(1.n) c AGZ(l.n), are described. The results 
obtained are illustrated by the examples of the nonlinear Schrodinger equations, reaction- 
diffusion equations and Hamilton-Jacobi-type systems. 

i 
h 

Q,. = --(ua, - da:) I,  = , m a u  + da:). 
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2. Description of systems (3) with Galilean symmetry 

The algebra of symmetries for the system of equations (1) contains the Galilei operators 
G,, a = 1, . . . , n, being a mathematical expression of the Galilei relativistic principle for 
equations (1). The Galilei operators are also known [3] to be closely related with the 
fundamental solution of the diffusion equation. We recall that if some system of PDEs is 
invariant with respect to the Galilei algebra or its extention, then it gives a wide range of 
possibilities for the construction of multiparametric families of exact solutions [l, 12,221. 
Moveover, the Galilei operators and the projective operator (24 generate non-trivial 
formulae of multiplication of solutions. These formulae can be used to convert stationary 
(time-independent) into non-stationary ones with a different structure. 

In view of this it seems reasonable to search for Galilei-invariant nonlinear 
generalizations of the system (1) in the class of the system (3). 

Theorem 1. 
the represention (k), (26) if and only if it has the form: 

The system of nonlinear equations (3) is invariant under the Galilei algebra in 

+V[DZQ@b(ln U)nb f EZ%wb(ln %b] 

where (In U)& = a21n u/ax,ax,, (In v), 3 a21n v/ax,axb, A InU (In ulI1 + 
... + (lnU)nn, AInV 
(hzU,/U -hlV,/V)w and Aw, Bk. Ck, 9. E+., k = 1,2  are arbitrary functions of absolute 
invariants of the AG(1.n) algebra w and 0 = w,m,. 

(InV)ll + ... + (InV)*", w = U?2V-Ai, w, = ao/ax, 

The proof of this and the following theorems is based on the classical Lie scheme, which 
is realized in [3,12] for obtaining the Galilei invariant equations. The detailed cumbersome 
calculations are omitted. 

Note that in the case where hl = 0, i.e. the first equation of system (3) being elliptical, 
the absolute invariants of the Galilei algebra simplify considerably: w = U, B = U,U,. 

In the case of systems of the form (3) being AGl(1.n)- and AGz(l.n)-invariant the 
structure of such systems essentially depends on the determinant 6. 
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where Ak7 Bk, Ck, Dk. Ek, k = 1 ,2  are arbitrary functions, 6 = w,o.02/6-2 and o are 
the absolute first-order invariants of the algebra AGl(l.n), a1 = 1, ..., n (oa,w-see 
theorem 1). 

W I Fushchych a d  R M Cherniha 

In the case when the first equation of system (3) degenerates into an elliptic (Al = 0) 
equation, the absolute invariants in systems (8) and (9) simplify and 6 = UaU,Uz~a~-z for 
s # 0,o = U fors  = 0. 

Theorem 3. 
AGz(1.n) with basic operators (2) (or], or2 are arbitrary constants) iff it has the form: 
(i) In the case 6 # 0 

The nonlinear system of equations (3) is invariant with respect to algebra 

A ~ U ~  = & l ~ ~ + ~ ~ ( 6 ) ( ~ Z ~ ~ n ~  - A ~ A I ~ v ) + u ~ - ~ / ~ B ~ ( ~ )  
+(I -~I)uoua/u + U w 2 ' 6 - z ~ ~ ~ b [ h 2 ( l n U ) ~ b  - Al(In v)ab]c(s^) 

(10) 
AzV, = & A V +  VD(e")(A2AInU --AIAlnV)+ V O - ' / ~ B ~ ( ~ )  

+(I - &)vava/v VWz/6-2W,Wb[hZ(~n~).b - AI(ln V),,b]E(6). 

(ii) In the case when 6 = 0 

AlU, = &AU + UA(o)(AzA In U - & A  In V )  + Uo.o.Bl(w) 

AzV, =&AV + VD(o)(AzAlnU -AlAIn V )  + Vo.oaB2(o) (11) 
+(I - &)uoua/u + v(w.,o=,)-'o,ob[AZ(lnU).b - -b(ln v)oblc(O)  

- c?z)h&/v + V(o,,o.,)-'o.ob[Az(InU),b - h( ln  v ) ~ b l E ( O )  

where A, B I ,  Bz, C, D ,  E are arbitrary functions, &k = -?q/n. k = 1 , 2  (ork-see the 
operator Ia). 

It should be noted that in the case where o r p z  # 0 the systems (10) and (11) can be 
reduced by the local substitution U -+ U'], V -+ Vaz to systems o f  the same structure, 
but with = 1, i.e. ork = -n/2. The specific case of a1 = or2 = 0 will be considered in 
what follows. 

The classes of AGz(1.n)-invariant systems (10) and (11) thus obtained contain, in 
particular, such genaralizations of equations (1) as (8 # 0) 

AlU, = A U +  elU(A2AInU - A1 Aln V )  

A2Ur = AV + ezV(AzA In U - 2.1 A In V )  

and (6 = 0) 

a(uv-l) a(uv-I) 
U, = AU + elU 

ax, ax, 

a(uv-l) a(uv-l) 
ax. ax, 

V, = A V  + e2V 

where el ,  e2 E R, 
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i f6  = 0. In equations (12),(13) Ak, Bx, Ow, E ,  C are arbiwary functions, ê  = U,U,U2/"~-z 
and &Z = -2a2/n. In I131 integration of two-dimensional systems of equations (12),(13) 
form was reduced to the integration of linear heat equation with a source. 

3. Galilei-invariant nonlinear generalizations of the Schrodinger equation 

As has been noted above, a class of nonlinear generalization of Schrodinger equation (4) is a 
specific case~of the systems of evolution equations (3). On the basis of theorems 1 , 2  and 3 
this enables one to describe all quasilinear generalizations of the Schrodinger equation (3, 
which are invariant with respect to a chain of algebras AG(1.n) c AGl(1.n) C AGz(1.n). 

Corollary I .  In the class of nonlinear equations of the form (4) the algebra AG(1.n) 
(k),(2b) with Q k  = -(i/h)(Uau - fia8) is admitted only for equations given by 

iV, +hAU = U[AlAln U + AzAInfi + B] 

+U[A31UIeIUlb@ U)eb f A4~U~u~U~b(ln&obl (14) 

where Aj, j = I. 2,3,4 and B are arbitrary complex functions of two arguments IUI and 
I U l a I U l a ;  IUI2 = uri, IUI" = alul/ax,. 

In the case Aj = 0 the class of equations (14) is reduced to the equation 

iU, + h A U  = UB(lUl, lUloIUld (15) 

obtained in [I, 121, whose specific case is a Schrodinger equation with power nonlinearity 
UIUIfl, fi  =constant. 

By using the identities 

AInlUIZ = (AlU12 - 4 1 ~ l ~ l ~ l u ~ / l U l ~  
Re(AU/U) + IVUIZ/IUl2 = AlnlUI + IUI,IUI,/IUl2 
Im(AU/U-UU,U,/U2)=(AInU-AInir)/2i  
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it is easy to show that the class of the Galilei-invariant equations (14) contains the equation 

iUt + AU = -UAIUlz/lUlz + U[dl(Re(AU/U) + lVUlz/IUl2) 

W I Fushchych and R M Chemihn 

id 
2 
+dzIm(AU/U - (VU/U)*)  +ddRe(VU/U)') + IVUlz/lU12)] 

where VU = (aU/ax~,  . . . , aU/ax,), dl, dz, d3 E R, proposed in [9] from certain physical 
considerations. By the way, a nonlinear generalization of the Schrodinger equation [SI 

iV, = (id1 - h)AU + id~UlVUl*/ lUl~ + UB(lUl) 

does not preserve Galilean symmetry of the linear Schrodinger equation. Instead it would 
be appropriate to propose Galilei-invariant nonlinear equations of the class (14) 

iu, = CAU + (h  - C ) ~ ~ ( V U ~ ~ / I U I ~  + U B ( I U I )  

and [13] 

iU, = -hAU + cUAIUIZ/IUIZ + UB(lUl) 

where c is arbitrary complex constant and B is an arbitrary complex function. 

Corollary 2. 
(Zu), (2b), (2c), (6) is admitted only for equations given by: 
(i) In the case 01 # 0 

i U , + h A U =  U I D ~ A I n U + D z A I n ~ + I U I - Z ~ C L B l  

In the class of nonlinear equations of the form (4) the algebra AGl(1.n) 

fUIUIZ'(L-2[D31UI,IUIb(ln U)nb f D41UIoIUlb(ln $ab] (16) 

where D j ,  j = 1,2 ,3 ,4  and B are arbitrary complex functions of the argument 
1u1z~oL-21ul,luI". 
(ii) In the case (Y = 0 

iU, + hAU = U[DlAInU + DzAInir + lUldlUl.Bl 

+u(lula, IUI . , ) - ' [D~IUIUIU~~(~~ u ) a b  f ~ 4 l ~ l a ~ ~ ~ b ( ~ n f i ) o b l  (17) 

where Dj = Dj(lU[) ,  j = 1 , 2 , 3 , 4  andB = B(lUl) are arbitrary complex functions. 

It is easily seen that the class of the AGl(l.n)-invariant equations (14) contains the well 
known nonlinear Schrodinger equation 

iU, + hAU + cUIU1' = 0 (18) 
which in the case n = 1 is integrated by inverse scattering method [14]. Note that in the 
case n = 2 equation (17) is invariant under the AGz(1.2) algebra [12,15]. 

Corollary 3. Within the class of nonlinear equations of the form (4) the algebra AGz(1.n) 
(Z), (6) for 01 = -n/2 of the linear Schrodinger equation (5) is conserved only for equations 
given by 

(19) 

In equation (19) E l ,  E2 and B are arbitrary complex functions of the argument 
]Uf-4/"-21Ul,lU],, which is an absolute invariant of the generalized Galilei algebra 
AGz(1.n). 

iu, + hAU = UEl  AlnlUI 4- UIUI4'"B + UIUI-4'"-ZEzlUI"lUlb(lnlUl)ab. 
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If we consider a representation of the AGz(1.n) algebra with basic operators (2),(6) 
for 01 = 0, a principally different class of quasilinear second-order equations, invariant with 
respect to this algebra, namely 
iU, + hU.U,/U = UEI(IUl)AlnlUI + UlUl,lUl,B(lUl) 

is obtained. 

simplest one among them being Hamilton-Jacobi equation for a complex function: 

+c'EZ(/u/)(lula, IUI,,)-'IUI=IU(b([n(Ul)~b (20) 

It is easily seen that within the class of (20) there is not a single linear equation, the 

iU, + hUJJ, f U = 0 
which is reduced to a standard form 

aw w, = - 
at  

aw 
iW, + hW, W, = 0 WO = ax, 

by a local substitution U = exp W ,  W = W(t, X I ,  . . . , x n ) .  
In the case El  = E2 = 0 the equation 

iU, + hAU = U ] U ] 4 / " B  (21) 
is obtained from~ the class of equations (19), which had been obtained in [l, 121. Note 
that for B = c = constant equation (21) is transformed into an equation with fixed power 
nonlinearity, studied in a series of papers (for n = 1 [16,17], n = 2 1181, and n = 3 
[1,2,12,19]). In [I ,  121 multiparmetric families of invariant solutions of equation (21) of 
the form 

I U l n I ~ l n  
IW 

iU, + h A U  = CU 

have also been constructed and systematized. 

the class of equations (19) is given by 

E1 and B being arbitrary complex functions of the argument lU]-31Ulx. 

Being written in the case of one spatial variable (n = I), after simple transformations 

iU,+hU, =UEl(ZnlUI),,+UIU14B U = U ( t , x )  x = x 1  (22) 

iU,+hU,,+c~UIUI4+c2UIUIIUI, = O  (23) 

Obviously, a specific case of (22) is given by 

which for h = 1, cI = 1, cz = 4 is known as the Eckhaus equation [ZO, 211. Equation (23) 
has been studied in detail for arbitrary constant values of cI and cz in [22]. A 
multidimensional generalization of (23). posessing AGz(1.n) symmetry, can be proposed: 

iV, + hAU +clUIU14/" + C~UIUI-'+~/"(IU~,IUI,)''' = 0. (24) 

4. Galilei-invariant systems of Hamilton-Jacobi-type 

It should be noted that the local substitution U = M ( f i ) ,  V = N(C), where M, N 
are arbitrary differentiable functions, reduces any system of equations with the symmetry 
AG(1.n). AGl(1.n) orAGz(1.n) to a locally equivalent system with the same~symmetry, 
but with a different representation of the operators Q,I and Z., namely 
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In the particular case where M = exp(fi), N = exp(?), we obtain 

In this case the class of equation systems, invariant with respect to AGz(l.n) algebra in the 
representation (2),  (Z), for 8 = 0 is given by 

W I Fushchych and R M Chernihn 

QA = A l a o  +izai ,  I. = alao fazap. (2.5) 

hlfir = s l ~ f i + ~ ( & ) ( ~ z ~ B  - A~A?)+&&,B,(&) 
+fiafio + C(&)(&~,&,,)- '&=&b[Az~=b - A 1  ?&I 

(26) 
A z f i  =&zA?+D(&)(AzAfi -?.1A?)+ha&Bz(&) 

+?a?, + E(; ) (&=, ;~~)- '&~&b[Azf i~b - Ai?ab] 

where&= A z ~ - A I ? , & ~  = A~Lj,-A~?~andA,B,,Bz,C,D,Earearbi~arydifferentiable 
functions. 

In the case where 81 = &,= 0, A = C = D = E = 0 the system of equations (26) is 
reduced to the systems of the form (the symbols ? being omitted below) 

(27) 
h1Ut = UaUa + u ~ o A B I ( ~ )  
hi& = KV, + w.w,Bz(o) AiAz # 0. 

It is natural to call the system (27) a generalization of the non-coupled system of 
Hamilton-Jacobi (HJ) equations 

hl U, = U. U, 
= V,V". (28) 

In contrast to the symmetry of a single HJ equation 12,231, the local symmetry of the 
system (28) is exhausted by the AGz(1.n) algebra (2),(25) for a1 = 012 = 0 with the 
additional operators 

p v  = av D, = -tat + uau + vav. (29) 
Thus, all the nonlinear generalizations of the form 

(30) 
AIUI=U,Ua+B1(U. V, UI ... Un, VI... Vn) 
A i &  = V,V, + &(U. V, V I . .  . U,, K . .. V,) 

of the HI system, preserving its symmetry AGz(l.n),  are exhaused by the system (27). 
Among the nonlinear generalizations of the HI system (27), a system of equations with 

unique symmetry properties exists, namely for BI = 0, BZ = -1/(A# (in what follows 
A1 = 1, Az A). 

Theorem 4. 
equations 

The maximal (in the sense of Lie) algebra of the invariance for the system of 

(31) 
U, = UJJ, 
Vr=-AU,U,+2V,V, 

is generated by the basic operators 
P, P, .rob Q~ =har, - a v  x =  wav 
G , = ~ P , - ~ x , Q , L  D=2tPt+xaP0 
n = tZPr +tx,P, - a lx lZQ~ 

G A = U P , - ~ X , P ~  D1 = Z U P U + X ~ P ~  
n1 = UZP, +UX"P, - ilXl?P, 
K, = X . t P ~ - ( 2 t ~ + ~ 1 X 1 2 ) p ~ + X ~ X b p b + X ~ ~ Q ~  

where W is an a rb i t rq  differentiable function of AU - V .  
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Note that the presence of the operator X including an arbitrary function W in the 
invariance algebra for the system (31) is natural, since the second equation of the system is 
linear with respect to the function V .  Much more interesting is the fact the system (31) can 
be considered as a generalization of the classical HJ equation to the case of two unknown 
functions, since for W = 1 the operators (32) generate the same algebra as the HJ equation. 
We consider this fact to be very important, since a trivial generalization of the above- 
mentioned equation to the system (28) does not preserve the symmetry of the HI equation. 

5. Galiiei-invariant reactio-usion systems 

We now consider a nonlinear system of evolution equations given by 

AlUz = AU + f(U, V )  
AzVt = AV + g(U,  V )  (33) 

where f, g are arbitrary differentiable functions. The systems of reaction-diffusion 
equations (33) has been studied intensively of late (see, e.g., [4,6,7]). As follows from 
theorems I, 2 and 3, the class of systems (33) contains systems with broad symmetry. In 
particular, all the systems of equations of the form 

will be invariant under the Galilei algebra AG(1.n). 

Notel .  InthecasewhereAz= 1 1  =A, f=d i ( (U+V) /V)do- l , g=~d~( (U+V) /V)dO-  
d3 and do, d1, dz. d3 E R the system (34) is the particular case of the conservation equations 
for normal and mutant cells [7, NI. 

In the case where f = p1w-2/s, g = ,~’ZO-~/~, 8 # 0 (6 is defined in the introduction) 
there will be invariance under the algebra AGl(1.n). Finally, for 6 = -n(Az - A1)/2, i.e. 
(YI = 012 = -n/2, the system of equations 

hlUt = All  +piLI1+’ZyV-’lY 
AzK = AV + pzV1-”’yUAIY (35) 

is obtained (where y = 4/(n(A~ -11)). Az f AI,  & E 9, preserving the AGz(1.n)- 
symmetry of the linear system (1). 

Note 2. For AZ = -A1 = A the diffusion system (33) is reduced by the substitution 

U = Y + Z  V = Y - Z  Y = Y ( t , x )  Z = Z ( t , x )  (36) 

to the system of equations 

- A Y , = A Z + f i ( Y , Z )  

AZ, = A Y  +gi (Y,  Z )  

whose invariance under the chain of algebras AG(1.n) c AGl(1.n) c AGz(1.n) with the 
unit operator QA = AYaz + AZay is described by the substitution (36) being applied to the 
system of equations of the form (33) with the corresponding symmetry. 

It is interesting to consider the system (33) in the case where one of the equations 
degenerates into an elliptical one. Without reducing generality we consider A2 = 0, AI = 1. 
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Then according to theorem 1, all systems of the form (33) for 12 = 0, AI = 1 and posessing 
AG(1.n) symmetry are given by 

W I Fushchych and R M Cherniha 

U,  = AU + U f ( V )  

0 = AV + g ( V )  

( 3 7 4  

(37b) 
where f and g are arbitrary functions. 

For the system (37) a clear physical treatment can be suggested. Namely, equation ( 3 7 4  
is the heat equation with a spatial source of energy absorption (extraction) q = U f ( V ) ,  
proportional to the temperature U ,  with an additional constraint of the elliptical equation 
(37b) being imposed on the proportionality coeficient f ( V )  (in particular we can consider 
f ( V )  = V).  Thus we have obtained a class of nonlinear beat equations with an additional 
constraint for the source that preserve the Galilean symmetry of the linear heat equation. 
This result is quite non-trivial, since it is a well known fact that among nonlinear heat 
equations with a source 

U, = A U + q ( U )  

not a single one is invariant with respect to the Galilei algebra AG(1.n) 131. As can be 
seen, this 'symmetry contradiction' between the linear and nonlinear heat equations can 
be solved in two ways: either the source is supposed to depend explicitly on temperature 
and the independent variables t, X I ,  . . . , x. [3],  or an additional constraint equation (376) is 
imposed upon the source as above. 

E R, the 
system (37) is invariant under the AGl(1.n) algebra (2u)-(2c). If the system (37) has the 
form 

It should be noted that in the case f = p1V2/ui, g = &V'+z/az, 0 # uz, 

U,=AU+B1UV4'" (38d  

(38b) 
it is invariant under the AGz(1.n) algebra with basic operators (2) for 12 = 0, 11 = 1, 
i.e. the heat equation (38a) with nonlinear constraint (386) for the source conserves all the 
non-trivial Lie symmetry of the linear heat equation 

O=AV+&V 1+4/n 

Cl, = A U .  

Note 3. 
can lose any symmetry. 

If V is a fixed given function on independent variables f ,  X I ,  . . . , x,, equation (38a) 

In conclusion, the interesting system of the form (33) should be considered, namely 

Theorem 5. The maximal algebra of invariance for the system (39) is the generalized 
Galilei algebra with the basic operators (?a), (26) and 

D =VP, +X,P" -2ua" - (:++A 
2 B 1 -  Bz 

vau. I7 = -t2P , + t D  - -1x[ZQ* - - 
PI -Bz 

1 A 
4 
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By the way, among the systems of the form (33), in the case where 2.2 = h,  = 2. 
there is not an AGz(l.n)-invariant system in the standard representation (2). Note that the 
system (39) can be considered as a particularcase of the conservation equations for normal 
and mutant cells [7,24]. 

Some classes of exact solutions for the system (39) have been obtained in [25]. 
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