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Galilei-invariant nonlinear systems of evolution equations

Wilhelm I Fushchych and Roman M Chernihat

Institute of Mathemnatics, National Ukrainian Academy of Sciences, 3 Tereshchenkivs'ka Street,
Kyiv 4, Ukraine

Recejved 20 April 1995

Abstract. All systems of (n 4 1}-dimensional quasilinear second-order evolution equations
invariant under chain of algebras AG(1.7) C AG;{1.n} C AG2 (L) are described. The results
obtained are illustrated by the examples of the nonlinear Schridinger equatons, Hamilton—
Jacobi-type systems and reaction—diffusion equations.

1. Introduction

The (n + 1)-dimensional diffusion ¢heat) system of equations
MU, =AU
MMV, =AV
where U = U{t,x),V = V{(t,x) are unknown differentiable real functions, U, =

au/sar, Vi = 8V/at, x = (x1,...,%n), 21, k2 € R, is known to be invariant under the
generalized Galilei algebra AG,(1.1) [1,2]

(D

P=2 P, =1, ] (23)
X,

O =MUdy + 12 Voy G, =1tPF, — EH'QA Jop = %0 Py — Xp Fy (26)

D=2tP +x,Py+1, (2c)

=P +1x, Py — LxP Qs + 11y, 0 = —3n. (24)

In relations (2) and elsewhere hereinafter I, = oyU8y + aaVdy, 8y =.0/3U, 8y =
-3/3V, 8, =0fot, 8, =9/8x,, ox € R, k=1,2 and a summation is assumed from I to
n over repeated indices.
The algebra produced by the operators (2a), (25) is called the Galilei algebra AG(1.n),
and its extension by using the operator (2c) will be refereed to as AG;(1.n) [1,2].
Clearly, the unit operators I, and @, are linearly dependent only in the case when the
determinant

¥y

8= :
A Az

=Q.

As a result we obtain two essentially different representations of algebras AG{(1.r) and
AG;(1.m) for 8 = 0 and § # 0O, in contrast to the case of a single diffusion equation (the
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5570 W I Fushchych and R M Cherniha

nonlinear diffusion equation invariant with respect of a set of AG,(1.n) subalgebras was
studied in [2,3]).

Notc that in the case when the system (1) is a pair of complex conjugate Schrédinger
equations, i.e. U = !*f, A= il = |, the operators I, and @, are linearly independent. This
results in the fact that nonlinear generalizations of Schrédinger equations, preserving their
symmetry [1], differ essentially from nonlinear generalizations of the diffusion system (1)
foré =0.

Now consider a system of quasilinear generalizations of diffusion equations (1) of the
form

Ml = AabUab + CabVab + Bl

(3)
MV = Dyplpp + EgpVap + B

where A.y, Cap, Dup, Eup, B, By are arbitrary real or complex differentiable functions of
2n+4 2 variables U, V, Uy, ..., Up, V1, ..., Vy. The indices e =1,...,nand b=1,...,n
of functions I/ and V denote differentiating with respect to x, and xp.

The system (3) generalizes practically all the known nonlinear systems of first- and
second-order evolution equations, describing various processes in physics, chemistry and
biology (heat-and-mass transfer, filtration of a two-phase liquid, diffusion in chemical
reaction etc) [4-7]. . . . . .

In the case of complex U =V, Agp = Egp, Cap = Dgp, By = By = B, A1 = Ap =i the
system (3) is transformed into a pair of complex conjugate equations. We treat them as a
class of nonlinear generalizations of Schrédinger equations, namely

iU.r = Aaqub + 5:1.5[7::5 +B (461)
_i[}r = ;iabf}ab + DabUab + E’ (4[9)

(hereinafter the complex conjugate equations (4%) are omitted).
For Ayp = Dgp = Dyy = 0,a # b, Ayy = —h equation (da) is obviously transformed
into a Schridinger equation with nonlinear potential B:

iU, + hAU = B. "

By choice of the corresponding potential B = B(U, U N ---U,,,L*f 1scnea U n) a great
variety of Schriddinger equation generalizations, known from the literature (see, eg.,
[1,2,8,9,107), can be obtained.

In the case of zero potential B 2 classical Schrédinger equation is obtained

iU, + AU =0 )

invariant under AG2(1.n} algebra with the basic operators (2) [11], where
i * %
O, = —E(Uau - UBE,) Iy =oaUdy + Ua{:,). (6)

Note that the algebra AGa(1.n) in the case of the Schrddinger equations is called the
Schrodinger algebra [11].

In the present paper all the systems of evolution equations of the form (3), invariant
under the chain of algebras AG(1.n) C AG(1.n) C AGz(l.n), are described. The results
obtained are illustrated by the examples of the nonlinear Schrodinger equations, reaction—
diffusion equations and Hamilton—Jacobi-type systems.
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2. Description of systems (3) with Galilean symmetry

The algebra of symmetries for the system of equations (1) contains the Galilei operators
G,,a=1,...,n, being a mathematical expression of the Galilei relativistic principle for
equations (1). The Galilei operators are also known [3] to be closely related with the
fundamental solution of the diffusion equation. We recall that if some system of PDEs is
invariant with respect o the Galilei algebra or its extention, then it gives a wide range of
possibilities for the construction of multiparametric families of exact solutions [1, 12,22].
Moveover, the Galilei operators and the projective operator {2d) generate non-trivial
formulae of multiplication of solutions. These formulae can be used to convert stationary
(time-independent) into non-stationary ones with a different structure.

In view of this it seems reasonable to search for Galilei-invariant nonlinear
generalizations of the system (1) in the class of the system (3).

Theorem 1. The system of nonlinear equations (3) is invariant under the Galilei algebra in
the represention (2a), (2b) if and only if it has the form:
MU, = AU +UTAIAINU + CiAInV 4 Bi]

+UT Az (In U) g + Cowp0p(In V) gp]
AMVi=AV+V[DAIMU+ EfAInV + By

+VID2wswp(InU)us + Eawaep(ln V)] ,
where (InU)g = 82InU/3x,3xp, (InV)yp = 8*InV/3x,0%5, AlnU = (InU)y +
v (g, ANV = 0V + oo+ 0V, @ = UV, @, = dw/dx, =
(Aol /U — Ve / Vw and Ag, By, Cy, Dy, Er, k= 1,2 are arbitrary functions of absolute
invariants of the AG(1.n) algebra w and 6 = wyew,.

(7

The proof of this and the following theorems is based on the classical Lie scheme, which
is realized in [3, 12] for obtaining the Galilei invariant equations, The detailed cumbersome
calculations are omitted.

Note that in the case where A; = 0, i.e. the first equation of system (3} being elliptical,
the absolute invariants of the Galilei algebra simplify considerably: @ = U/, 8 = U, U,.

- In the case of systems of the form (3) being AG(1.n)- and AG,(l.n)-invariant the
structure of such systems essentially depends on the determinant §.

Theorem 2. The nonlinear system (3) is invariant with resbcct to algebra AG{1.n) with
basic operators {2a)—(2¢) if and only if it has the form:
(1) In the case § # 0

MU, = AU + UA (D AIRU + Ay(@) AV + o~22 B ()]
+U=HC B)wywp (I8 Ve + C2(0)w005 (10 V) 5]

AV, = AV+ VDDA U + DAV + 028 By (6)] (_8)
+ Va2 Ey(6),0p (10 Uap + Ea(B)wawp(n V) ).
(i) In the case § = 0
MUy = AU + UlA (@) AV + Ay(@)A InV + w0, By (w)]
’ +U (@4, @a) ™ 0a[C1@)IN Vet + Ca(@)(ln V)] =

MV = AV L VI[Di{@)AInU + Da(w}ALRV 4 wym, Ba{(e)]
+V (04 06,) 7 e @5 [ EL(@) (I U)ay + En{w)(InU)gp]
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where Ay, By, Ci, Dy, Ex, k = 1,2 are arbitrary functions, 6 = w,w,0**2 and w are
the absolute first-order invariants of the algebra AG{l.n), a1 = 1,...,n (w,;, ®—see
theorem 1). ,

In the case when the first equation of system (3) degenerates into an elliptic (A; = 0)
equation, the absolute invariants in systems (8) and (9) simplify and 6 = U, U,U%* -2 for
i#£0o=Uford=0

Theorem 3. The nonlinear system of equations (3) is invariant with respect to algebra
AG,(1.n) with basic operators (2) (@, oy are arbitrary constants} iff it has the form:
(i} In the case § = 0

MU, = AU + UAB(G2A InU —2AIn V) + U3 By(5)
+(1 = @NUUL /U + U 2,05 [0 (0 — Ai(In V)gp]C6)

. . 10
AV = @AV + VD) (AU — 1 AIn V) 4+ Va2 B, (6) (10)
+(1 = @) VaVa/ V + Ve~ 2w,0, Do (inU)as ~ M{ln V)ap] EG).
(ii) In the case when § =0
MU = G AU + UA@)(AA U — LA V) + Uwaw, By (w)
+(1 — @ UL U + Uway@wa,) " @awp[Xalnl Yap — A1 (In V)05]C (@) an

MV = &AV 4+ V(@) A InU — AAIn V) + Vo, By(w)
(L = 82)VaVa/ V + V (03, 0a,) " 0002 @nU)ap — M(ln V)ap) ()

where A, By, Bs, C, D, E are arbitrary functions, & = —2o3/n, k = 1,2 (oy—see the
operator f).

It should be noted that in the case where ey # O the systems (10) and {11) can be
reduced by the local substitution U — U#%, V — V& to systems of the same structure,
but with & =1, ie. op = —n/2. The specific case of ey = a3 = 0 will be considered in
what follows.

The classes of AG4(l.n)-invariant systems (10} and (11) thus obtained contain, in
particular, such genaralizations of equations (1) as (5 # 0)

MU =AU+ iU AInU —AjAIn V)
MU =AV+ eV ARU —AARV)
and (3 =0)

aUV-H aUv-Y

U =AU +aU
! & ax, 9x,

aUVHawvh

Vi = AV v
¢ e B3x, 90X,

where e, g2 € R.
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In the case where the first of equations (3) degenerates into an elliptical one (A; = 0),
the AGq(1.n)-invariant systems of equations are simply

0= A1OIAU + A2(O) (U Usy) ™' UuUpUssp + U ¥4 B, (§)
+UCENAM YV — (Ua,Un) ' UalUp(ln V)p)

}aVi = BAV + 3 DAY + £ D) Ul Ul 12
+(1 = &)V, Vo/V + VU2 By(f)
+VEGIAIY — U Us)) " Ualp(In V)as]

if § % 0, and ' :

0= AU AU + Az(U) U U )" UaUpUsp + UpUa Bi(U)
FCUNAIR Y — (U, Uy Y U, Up(In V) 2]

MV = 8 AV + VD(NAU + VDo (DU Uy Y U, UpUpp + VULU, Ba(U)
+(1 = @)VaVe/V + VEUAINY — (Uy Uy, )" U, Up(In V)ap)

(13}

if § = 0. In equations (12), (13) Ax, Bi. Dy, E, C are arbitrary functions, § = U, U, %2
and &; = —2as/n. In [13] integration of two-dimensional systems of equations (12), (13)
form was reduced o the integration of linear heat equation with a source.

3. Galilei-invariant nonlinear generalizations of the Schridinger equation

As has been noted above, a class of nonlinear generalization of Schrédinger equation (4) isa
specific case-of the systems of evolution equations (3). On the basis of theorems 1, 2 and 3
this enables one to describe all quasilinear generalizations of the Schridinger equation (5),
which are invariaat with respect to a chain of algebras AG(L.n) C AG(L.a) C AG(1.n).

Corollary 1. In the class of nonlinear equations of the form (4) the algebra AG(lL.r)
(2a), (2b) with @), = —(i/ k(U dy — U8y) is admitted only for equations given by
iU, + hAU = U[A;AInU + A Aln T + B)

FU[A3 [TV lp(In U)yp + A4[U[alUlb(Ingr)ab] (14)
where A;, j = 1,2,3,4 and B are arbitrary complex functions of two arguments |U/| and

*
Ul Ula; U =UU, |Ula = 3|U|/8%,.

In the case A; = 0 the class of equations (14) is reduced to the equation
iUy + hAU = UB(U|, U .IU]2) - (15

obtained in [I, 12}, whose specific case is a Schridinger equation with power nonlinearity
UlU|#, 8 = constant.
By using the identities
AU =(AIUR-4U U/ U2
Re(AU/U) + [VUP/IUP = Aln|U| + |UllUlo/IU
AU/ — U,U, U = (AlnU — AlnU)/2i
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it is easy to show that the class of the Galilei-invariant equations (14) contains the equation
iU, + AU = %UAIUFAUF + UldiRe(AU/U) +|VU /U

+d Im(AU U — (VUSUYD) + d3(Re(VU/UY) + VU 2/ |U D]

where VU = (83U /8xy, ..., 3U/3x,), di,d2, d3 € R, proposed in [9] from certain physical
considerations. By the way, a nonlinear generalization of the Schridinger equation [8]

iU, = (id; — MAU +id U|VU */|U* + UBQU|)

does not preserve Galilean symmetry of the linear Schrodinger equation. Instead it would
be appropriate to propose Galilei-invariant nonlinear equations of the class (14)

iU, = cAU + (h — )T (VU/|U|* + UB(U|)
and [13]
iU, = —hAU + cUA|U /U + UB(U
where ¢ is arbitrary complex constant and B is an arbitrary compiex function.
Corollary 2. In the class of nonlinear equations of the form (4) the algebra AG(l.n)

(2a), (2b), (2¢), (6) is admitted only for equations given by:
(i) In the case ¢ = 0

iU, + hAU = U[D)AInU + D;AInU + |U|"%*B]
+U U2 D3| U [T 0 U g + Dal Ul Ul D)s] (16}

where D;,j = 1,2,3,4 and B are arbifrary complex funq:ions of the argument
U2 [,|U
(i) Inthe case . =0

U, + AU = U[D, AU + DoAln U + [U1,1U].B]
HU (U 12§02 " ID31U 1| U 1500 U)ap + DalU 1)U |50 U )ap] (17
where D; = Dy(|U[), j=1,2,3,4 andB = B(|U]) are arbitrary complex functions.
It is easily seen that the class of the AG,(1.n)-invariant equations (14) contains the well
known nonlinear Schidinger equation
iU, + hAU + cU|UP =0 (18)
which in the case n = 1 is integrated by inverse scattering method [14]. Note that in the

case n = 2 equation (17} is invariant under the AG2(1.2) algebra [12, 15].

Corollary 3. Within the class of nonlinear equations of the form (4} the algebra AG2(1.1)
(23, (6) for « = —n/2 of the linear Schrédinger equation (5} is conserved only for equations
given by

iU, + RAU = UE Aln|U| + U|UM*B + UIU ™" 2Ea| U u|Us0n|U Dap- (19)

In equation (19) E;, E: and B are arbitrary complex functions of the argument
JU1=%"=2|U{,1U|,, which is an absolute invariant of the generalized Galilei algebra
AGa(l.n).
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If we consider a representation of the AG.{1.n) algebra with basic operators (2),(6)
for & = 0, a principally different class of quasilinear second-order equations, invariant with
respect to this algebra, namely

W, +hU Uy /U = UEI(UDAI|U[+ UIU LU BT
U E(IUN U |01 MU LU |6 |U )b - (20

is obtained.
It is easily seen that within the class of (20) there is not a single linear equation, the
simplest one among them being Hamilton-Jacobi equation for a complex function:

i, +rUU, /U =0
which is reduced to a standard form

W, +-EW, W, =0 W, =

aw aw
W,

r=——

: 0x, at
by a local substitution U =exp W, W= W({t, x1,..., x,).
In the case E; = E; = 0 the equation
iU, + hAU = UlU*"B (21}
is obtained from the class of eqﬁations (19), which had been obtained in [1,12]. Note
that for B = ¢ = constant equation (21) is transformed into an equation with fixed power
nonlinearity, studied in a series of papers for n = 1 [16,17), #n = 2 [I18], and n = 3
[1,2,12.19]). In [1, 12} multiparametric families of invariant solutions of equation (21) of
the form -
. |UlalUla
- IUI +hAU = CUW
have also been constructed and systematized.
Being written in the case of one spatial variable {(n = 1), after simple transformations
the class of equations (19) is given by
iU, + hUyy = UE (In|U|)xx + U|U|*B U=U(,x) X =1x] (22)
E; and B being arbitrary complex functions of the argument |U|~3|U|;.
Obviously, a specific case of (22) is given by
iU, + by +  UIUP +cUIU| U, =0 (23)
which for h = 1,c; = 1, ¢ =4 is known as the Eckhaus equation [20, 21]. Equation (23)
has been studied in detall for arbitrary constant values of ¢; and ¢ in [22]. A
multidimensional generalization of (23), posessing AG2(l.#) symmetry, can be proposed:
iU, + hAU + qUIU %" + U U |72 (U | U] )Y? = 0. (24)

4, Galilei-invariant systems of Hamilton-Jacobi-type

It should be noted that the Focal substitution UV = M ([} L,V = N (Y}), where M, N
are arbitrary differentiable functions, reduces any system of equations with the symmetry
AG(1l.n), AG1(1.n) orAGz(1.n) to a locally equivalent system with the same-symmetry,
but with a different representation of the operators Q, and [, namely

n dM\"' . dN)'*
=M — Iy + AN — ay
Or=H (dU) g (dV ?
dM
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In the particular case where M = exp(ff), N= exp(i}), we obtain

Oy = M8y + A28 I, = a8 + 0128 ©(25)
In this case the class of equation systems, invariant with respect to AG2(1.n) algebra in the
representation (2}, (25), for § =0 is given by
MU, = 81 AT + A@) AT — 2 AV) + B,d0, B1 (D)

+UaUs + C(&)(ayBa,) ™ Bap[halap — A1 Vas)
JoVi = @AV + D@)OAT — MAVY + &,8,B2(8)

+ VoV + E(@)(Pa, B0y ) Butiplralap — M Vip]
where & = AU =MV, &y = 20,2, ¥, and A, By, Ba, C, D, E are arbitrary differentiable
functions.

In the case where & = &, =0, A =C = D = E = 0 the system of equations (26) is
reduced to the systems of the form (the symbols 7 being omitted below)

MU, = UUs + w0, B1(w)
A.]V; = VaVa + wacoaBz(co) )«.1}(.2 ?é 0.
It is natural to call the system (27} a generalization of the non-coupled system of
Hamilton—Jacobi (HI} equations
MU =U,U,
MV =V, V.
In contrast to the symmetry of a single HJ equation [2,23], the local symmetry of the

system (28) is exhausted by the AG2(l.n) algebra (2),(25) for o = @2 = 0 with the
additional operators

Py = dy Dy = =8+ Udy + Viv. 29
Thus, all the nonlinear generalizations of the form
MU =00, +B(U, V, Uy ..U, Vi... V)
MV, =V, V,+B(U, V, U1 ... Uz, ... V)
of the HF system, preserving its symmetry AG,(l.n), are exhaused by the system (27).
Among the nonlinear generalizations of the HJ system (27), a system of equations with
unique symmetry properties exists, namely for By = 0, B, = —1/(A2)? (in what follows
Al=1Ar=1).

(26}

27)

(28)

(30)

Theorem 4. The maximal (in the sense of Lie) algebra of the invariance for the system of
equations

Ut = UaUa
(31)
V. =AU U, +2U,V,
is generated by the basic operators

P, P, Jub Q; = Ady — Oy X=Way
Gu=1tP, — 3x. O D =2tP, + x, P,
I = 12P 4 tx, Py — L|x|?

[ Xaly 4|x| 2a 32)

Gl=UP, — ix. P, Dy =2UPy +x. P,

M, =UPy + Ux, Py — 5Ix[* P

Ky = xgt P, — (2tU + LI Py + Xoxp Py + x,U O
where W is an arbitrary differentiable function of AU — V.
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Note that the presence of the operator X including an arbitrary function W in the
invariance algebra for the system (31) is natural, since the second equation of the system is
linear with respect to the function V. Much more interesting is the fact the system (31) can
be considered as a generalization of the classical HI equation to the case of two unknown
functions, since for W = 1 the operators (32) generate the same algebra as the HJ equation.
We consider this fact to be very important, since a #rivial generalization of the above-
mentioned equation to the system (28) does nor preserve the symmetry of the Hf equation.

5. Galilei-invariant reaction—diffusion systems

We now consider a nonlinear system of evolution equations given by
MU =AU+ f(U, V)
AV, = AV +gU, V)

where f, g are arbitrary differentiable functions. The systems of reaction—diffusion

equations (33) has been studied intensively of late (see, e.g., [4,6,7]). As follows from

theorems I, 2 and 3, the class of systems (33) contains systems with broad symmetry. In

particular, all the systems of equations of the form
MU, =AU+ Uf(w) w=yhy-H
MV, = AV + Vg(w)

will be invariant under the Galilel algebra AG(1.n).

(33}

(34)

Notel. Inthecase wheredy = A; = A, f = di((U+V)/ V-1, g =dp (U+V)/ V)% —
ds and dy, dy, d2, ds € R the system (34) is the particular case of the conservation equations
for normal and mutant cells [7, 24].

In the case where f = B1w~%%, g = Bow™%? § £ 0 (8 is defined in the introduction)
there will be invariance under the algebra AG(1.n). Finally, for § = —n(iz — A1)/2, ie.
o) = oy = —n/2, the system of equations

AUy = AU + gy y—hiy

AoV, = AV + BV Imhr gy
is obtained (where y = 4/(n{i2 — M)}, X2 # A1, B € R), preserving the AG(l.n)-
symmetry of the linear system (1).

(35)

Note 2. For Ay = —Aiq = X the diffusion system (33) is reduced by the substitution
U=Y+Z V=¥Y-2Z Y=7(x) Z=Z{t,x) (36)
to the system of equations
-2\ =AZ+ AW, Z)
AZ, =AY +g1(¥, Z)

whose invariance under the chain of algebras AG(1.ny C AG{lL.n) C AGy(l.n) with the
unit operator (), = AY 8z 4 AZdy is described by the substitution (36) being applied to the
system of equations of the form (33} with the corresponding symmetry.

It is interesting to consider the system (33) in the case where one of the equations
degenerates into an elliptical one. Without reducing generality we consider A; =0, A; = 1.
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Then according to theorem 1, all systems of the form (33) for A2 =0, 4; = | and posessing
AG(l.n) symmetry are given by

Uy = AU + UF(V) (37a)
0=AV +g(V) (376

where f and g are arbitrary functions.

For the system (37) a clear physical treatment can be suggested. Namely, equation (372)
is the heat equation with a spatial source of energy absorption (extraction) g = Uf(V),
proportional to the temperature U, with an additional constraint of the elliptical equation
(37b) being imposed on the proportionality coeficient f(V) (in particular we can consider
F(V) = V). Thus we have obtained a class of nonlinear heat equations with an additional
constraint for the source that preserve the Galilean symmetry of the linear heat equation.
This result is quite non-trivial, since it is a well known fact that among nonlinear heat
equations with a source

Uy = AU + q(U)

not a single cne is invariant with respect to the Galilei algebra AG(1.n) [3]. As can be
seen, this ‘symmetry contradiction’ between the linear and nonlinear heat equations can
be solved in two ways: either the source is supposed to depend explicitly on temperature
and the independent variables ¢, xy, ..., x,; [3], or an additional constraint equation (376) is
imposed upon the source as above,

It should be noted that in the case f = B V¥™, g = B V¥ 0 £ oy, B € R, the
system (37) is invariant under the AG;(1.n) algebra (2a)—-(2¢). If the system (37) has the
form

Uy = AU + pUvH" (38a)
0= AV + gVitin (385

it is invariant under the AGa(l.n} algebra with basic operators (2) for A = 0, A4, = 1,
i.e. the heat equation (384) with nonlinear constraint (38%) for the source conserves all the
non-trivial Lie symmetry of the linear heat equation

U1=AU.

Note3. If V is afixed given function on independent variables ¢, x1, . . ., X, equation (38a)
can lose any symmetry.

In conclusion, the interesting system of the form (33) should be considered, namely
AU, = AU + gU?v-!

3
LV, = AV + 5U B # B 39

Theorem 5. The maximal algebra of invariance for the system (39) is the generalized
Galilei algebra with the basic operators (2a), (25) and

n [2)
D=2tP P, —-2Udy — | =
r + Xa Py o (2+ﬁ1—ﬁ2)gl

1
n=-;2p,+m—z|xlzgh— Voy.

A
B — B
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By the way, among the systems of the form (33), in the case where A = A = A
there is not an AG;(1.n)-invariant system in the standard representation (2). Note that the
system (39) can be considered as a particular case of the conservation equations for norrmal
and mutant cells [7,24].

Some classes of exact solutions for the system (39) have been obtained in [25].
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